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Abstract  This chapter discusses and illustrates some potential applications of dis-
crete-event simulation (DES) techniques in structural reliability and availability 
analysis, emphasizing the convenience of using probabilistic approaches in mod-
ern building and civil engineering practices.  After reviewing existing literature on 
the topic, some advantages of probabilistic techniques over analytical ones are 
highlighted.  Then, we introduce a general framework for performing structural re-
liability and availability analysis through DES.  Our methodology proposes the 
use of statistical distributions and techniques –such as survival analysis– to model 
component-level reliability.  Then, using failure- and repair-time distributions and 
information about the structural logical topology (which allows determining the 
structural state from their components’ state), structural reliability and availability 
information can be inferred.  Two numerical examples illustrate some potential 
applications of the proposed methodology to achieving more reliable and struc-
tural designs.  Finally, an alternative approach to model uncertainty at component 
level is also introduced as ongoing work.  This new approach is based on the use 
of fuzzy rule-based systems and it allows introducing experts’ opinions and 
evaluations in our methodology. 

9.1 Introduction 

Some building and civil engineering structures such as bridges, wind turbines and 
off-shore platforms are exposed to abrupt natural forces and constant stresses.  As 
a consequence of this, they suffer from age-related degradation in the form of de-
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terioration, fatigue, deformation, etc., and also from the effect of external factors 
such as corrosion, overloading or environmental hazards.  Thus, the state of these 
structures should not be considered constant –as often happens in structural litera-
ture– but rather as being variable through time.  For instance, reinforced concrete 
structures are frequently subject to the effect of aggressive environments [29].  
According to Li [18] there are three major ways in which structural concrete may 
deteriorate, namely: (i) surface deterioration of the concrete, (ii) internal degrada-
tion of the concrete, and (iii) corrosion of reinforcing steel in concrete.  Of these, 
reinforcing steel corrosion is the most common form of deterioration in concrete 
structures and is the main target for the durability requirements prescribed in most 
design codes for concrete structures [24].  In other words, these structures suffer 
from different degrees of resistance deterioration due to aggressive environments 
and, therefore, reliability problems associated with these structures should always 
consider the structure’s evolution through time. 

In this chapter we propose the use of non-deterministic approaches –
specifically those based on discrete-event simulation (DES) and fuzzy rule-based 
systems– as the most natural way to deal with uncertainties in time-dependent 
structural reliability and availability (R&A) analysis.  With this goal in mind, we 
first discuss why these approaches should be preferred to others in structural R&A 
issues, especially in those structures that can be considered time-dependent sys-
tems, i.e.: sets of individual time-dependent components connected by an underly-
ing logical topology, which allows determining the actual structural state from the 
components’ states.  We also review some previous works that promote the use of 
simulation-techniques –mainly Monte Carlo simulation– in the structural reliabil-
ity arena.  Then, our DES approach is introduced and discussed.  This approach 
can be employed to offer solutions to structural R&A problems in complex scenar-
ios, i.e.: it can help decision-makers develop more reliable and cost-efficient struc-
tural designs.  Some potential applications of our approach to structural R&A 
analysis are illustrated through two numerical examples.  Finally, an alternative 
approach for modeling component-level uncertainty is also proposed.  This later 
approach relies upon the use of fuzzy rule-based systems, and in our opinion it 
represents a promising line of research in the structural reliability arena.  

9.2 Basic Concepts on Structural Reliability 

For any given structure, it is possible to define a set of limit states [23].  Violation 
of any of those limit states can be considered a structural failure of a particular 
magnitude or type and represents an undesirable condition for the structure.  In 
this sense, Structural Reliability is an engineering discipline that provides a series 
of concepts, methods and tools to predict and/or determine the reliability, avail-
ability and safety of buildings, bridges, industrial plants, off-shore platforms and 
other structures, both during their design stage and during their useful life.  Struc-



Potential Applications of DES and Fuzzy Rule-Based Systems to Structural R&A 3 

tural Reliability should be understood as the structure’s ability to satisfy its design 
goals for some specified time period.  From a formal perspective, Structural Reli-
ability is defined as the probability that a structure will not achieve each specified 
limit state –i.e. will not suffer a failure of certain type– during a specified period 
of time [30].  For each identified failure mode, the failure probability of a structure 
is a function of operating time, t , and may be expressed in terms of the distribu-
tion function, ( )F t , depending on the time-to-failure random variable, T .  The 
reliability or survival function, ( )R t , which is the probability that the structure 
will not have achieved the corresponding limit state at time 0t > , is then given by 

( ) 1 ( ) ( )R t F t P T t= − = > .  According to Petryna and Krätzig [26], interest in 
structural reliability analysis has been increasing in recent years, and today it can 
be considered a primary issue in civil engineering.  From a reliability point of 
view, one of the main targets of structural reliability is to provide an assembly of 
components which, when acting together, will perform satisfactorily –i.e., without 
suffering critical or relevant failures– for some specified time period, either with 
or without maintenance policies.   

9.3 Component-level vs. Structural-level Reliability 

In most cases, a structure can be viewed as a system of components (or individual 
elements) linked together by an underlying logical topology that describes the in-
teractions and dependencies among the components.  Each of these components 
deteriorates according to an analytical degradation or survival function and, there-
fore, the structural reliability is a function of each component’s reliability function 
and the logical topology.  Thus it seems reasonable to assess the probability of 
failure of the structure based upon its elements’ failure probability information 
[19] – [4].  As noticed by Frangopol and Maute [9], depending on the structure’s 
topology, material behavior, statistical correlation, and variability in loads and 
strengths, the reliability of a structural system can be significantly different from 
the reliability of its components.  Therefore, the reliability of a structural system 
may be estimated at two levels: component level and system or structural level.  
At the component level, limit state formulations and efficient analytical and simu-
lation procedures have been developed for reliability estimation [25].  In particu-
lar, if a new structure will likely have some components that have been used in 
other structural designs, chances are that there will be plenty of available data; on 
the other hand, if a new structure uses components about which no historical data 
exists, then survival analysis methods, such as accelerated life testing, can be used 
to obtain information about component reliability behavior [22].  Also, Fuzzy Sets 
theory can be used as a natural and alternative way to model individual component 
behavior [27] – [14].  Component failures may be modeled as ductile (full residual 
capacity after failure), brittle (no residual capacity after failure), or semi-brittle 
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(partial residual capacity after failure).  Structural-level analysis, on the other 
hand, addresses two types of issues: (1) multiple performance criteria or multiple 
structural states, and (2) multiple paths or sequences of individual component fail-
ures leading to overall structural failure.  Notice that sometimes it will be neces-
sary to consider possible interactions among structural components, i.e. to study 
possible dependencies among component failure-times. 

9.4 Contribution of Probabilistic-Based Approaches 

In most countries, structural design must agree with codes of practice.  These 
structural codes used to have a deterministic format and describe what are consid-
ered to be the minimum design and construction standards for each type of struc-
ture.  In contrast to this, structural reliability analysis worries about the rational 
treatment of uncertainties in structural design and the corresponding decision mak-
ing.  As noticed by Lertwongkornkit et al. [17], it is becoming increasingly com-
mon to design buildings and other civil infrastructure systems with an underlying 
“performance-based” objective which might consider more than just two structural 
states (collapsed or not collapsed).  This makes it necessary to use techniques 
other than just design codes in order to account for uncertainty on key random 
variables affecting structural behavior.  According to other authors [31] – [20] 
standards for structural design are basically a summary of the current “state of 
knowledge” but offer only limited information about the real evolution of the 
structure through time.  Therefore, these authors strongly recommend the use of 
probabilistic techniques, which require fewer assumptions.  Camarinopoulos et al. 
[3] do also recommend the use of probabilistic methods as a more rational ap-
proach to deal with safety problems in structural engineering.  In their words, 
“these [probabilistic] methods provide basic tools for evaluating structural safety 
quantitatively”. 

9.5 Analytical vs. Simulation-based Approaches 

As Park et al. [25] point out, it is difficult to calculate probabilities for each limit-
state of a structural system.  Structural reliability analysis can be performed using 
analytical methods or simulation-based methods [19].  A detailed and up-to-date 
description of most available methods can be found at [5].  On one hand, analyti-
cal methods tend to be complex and generally involve restrictive simplifying as-
sumptions about structural behavior, which makes them difficult to apply in real 
scenarios.  On the other hand, simulation-based methods can also incorporate real-
istic structural behavior [20] – [2] – [15].  Traditionally, simulation-based methods 
have been considered to be computationally expensive, especially when dealing 
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with highly reliable structures [21].  This is because when there is a low failure 
rate, a large number of simulations are needed in order to get accurate estimates –
this is usually known as the “rare-event problem”.  Under these circumstances, use 
of variance reduction techniques (such as importance sampling) are usually rec-
ommended.  Nevertheless, in our opinion these computational concerns can now 
be considered mostly obsolete due to outstanding improvement in processing 
power experienced in recent years.  This is especially true when the goal –as in 
our case– is to estimate time-dependent structural R&A functions, where the rare-
event problem is not a major issue. 

9.6 Use of Simulation in Structural Reliability 

There is some confusion in structural reliability literature about the differences be-
tween Monte Carlo simulation and DES. They are often used as if they were the 
same thing when, in fact, they are not [16].  Monte Carlo simulation has fre-
quently been used to estimate failure probability and to verify the results of other 
reliability analysis methods.  In this technique, the random loads and random re-
sistance of a structure are simulated and these simulated data are then used to find 
out if the structure fails or not, according to pre-determined limit states.  The 
probability of failure is the relative ratio between the number of failure occur-
rences and the total number of simulations.  Monte Carlo simulation has been ap-
plied in structural reliability analysis for at least three decades now.  Fagan and 
Wilson [6] presented a Monte Carlo simulation procedure to test, compare and 
verify the results obtained by analytical methods.  Stewart and Rosowsky [29] de-
veloped a structural deterioration reliability model to calculate probabilities of 
structural failure for a typical reinforced concrete continuous slab bridge.  Kamal 
and Ayyub [13] were probably the first to use DES for reliability assessment of 
structural systems that would account for correlation among failure modes and 
component failures.  Recently, Song and Kang [28] presented a numerical method 
based on subset simulation to analyze the reliability sensitivity.  Following Juan 
and Vila [12], Faulin et al. [7] and Marquez et al. [21], the basic idea behind the 
use of DES in structural reliability problems is to model uncertainty by means of 
statistical distributions which are then used to generate random discrete-events in 
a computer model so that a structural lifetime is generated by simulation.  After 
running some thousands or millions of these structural lifetimes –which can be at-
tained in just a few seconds with a standard personal computer–, confidence inter-
val estimates can be calculated for the desired measures of performance.  These 
estimates can be obtained using inference techniques, since each replication can be 
seen as a single observation randomly selected from the population of all possible 
structural lifetimes.  Notice that, apart from obtaining estimates for several per-
formance measures, DES also facilitates obtaining detailed knowledge on the life-
time evolution of the analyzed structure. 
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9.7 Our Approach to the Structural Reliability Problem 

Consider a structure with several components which are connected together ac-
cording to a known logical topology- that is, a set of minimal paths describing 
combinations of components that must be operating in order to avoid a structural 
failure of some kind.  Assume also that time-dependent reliability/availability 
functions are known at the component-level, i.e., each component failure- and/or 
repair- time distribution is known.  As discussed before, this information might 
have been obtained from historical records or, alternatively, from survival analysis 
techniques –e.g. accelerated life tests– on individual components.  Therefore, at 
any moment in time the structure will be in one of the following states: (a) perfect 
condition, i.e.: all components are in perfect condition and thus the structure is 
fully operational; (b) slight damage, i.e.: some components have experienced fail-
ures but this has not affected the structural operability in a significant way; (c) se-
vere damage, i.e.: some components have failed and this has significantly limited 
the structural operability; and (d) collapsed, i.e.: some components have failed and 
this might imply structural collapse.  Notice that, under these circumstances, there 
are three possible types of structural failures depending upon the state that the 
structure has reached.  Of course, the most relevant –and hopefully least frequent– 
of these structural failures is structural collapse, but sometimes it might also be in-
teresting to be able to estimate the reliability or availability functions associated 
with other structural failures as well.  To attain this goal, DES can be used to arti-
ficially generate a random sample of structural lifecycles (Figure 9.1).   
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Fig. 9.1 Using DES to generate a structural lifecycle 

 
In effect, as explained in [8] component-level failure- and repair-time distribu-

tions can be used to randomly schedule component-level failures and repairs.  
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Therefore, it is possible to track the current state of each individual component at 
each target time.  This information is then combined with the structural logical to-
pology to infer the structural state at each target time. 

By repeating this process, a set of randomly generated lifecycles is provided 
for the given structure.  Each of these lifecycles provides observations of the struc-
tural state at each target-time.  Therefore, once a sufficient number of iterations 
has been run, accurate point and interval estimates can be calculated for the struc-
tural reliability at each target time [12].  Also, additional information can be ob-
tained from these runs, such as: which components are more likely to fail, which 
component failures are more likely to cause structural failures (failure criticality 
indices), which structural failures occur more frequently, etc. [11] 

Moreover, notice that DES could also be employed to analyze different scenar-
ios (what-if analysis), i.e.: to study the effects of a different logical topology on 
structural reliability, the effects of adding some redundant components on struc-
tural reliability, or even the effects of improving reliability of some individual 
components (Figure 9.2).   
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Fig. 9.2 Scheme of our approach 

 
Finally, DES also allows for considering the effect of dependencies among 

component failures and/or repairs.  It is usually the case that a component failure 
or repair affects the failure or repair rate of other components.  In other words, 
component failure- and repair-times are not independent in most real situations.  
Again, discrete-event simulation can handle this complexity by simply updating 
the failure- or repair-time distributions of each component each time a new com-
ponent failure or repair takes place [8].  This way, dependencies can be also intro-
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duced in the model.  Notice that this represents a major difference between our 
approach and other approaches –mainly analytical ones–, where dependencies 
among components, repair-times or multi-state structures are difficult to consider. 

9.8 Numerical Example 1: Structural Reliability 

We present here a case study of three possible designs for a bridge.  As can be 
seen in Figure 9.3, there is an original design (case A) and two different alterna-
tives, one with redundant components (case B) and another with reinforced com-
ponents (case C).   
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Fig. 9.3 Different possible designs for a structure 

Our first goal is to illustrate how our approach can be used in the design phase to 
help pick the most appropriate design, depending on factors such as the desired 
structural reliability, the available budget (cost factor) and other project restric-
tions.  As explained before, different levels of failure can be defined for each 
structure, and in examining how and when the structures fail in these ways, one 
can measure their reliability as a function of time.  Different survival functions can 
be then obtained for a given structure, one for each structural failure type.  By 
comparing the reliability of one bridge to another, one can determine whether a 
certain increase in structural robustness –either via redundancy or via reinforce-
ment– is worthwhile according to the engineer’s utility function.  As can be de-
duced from Figure 9.3, the three possible bridges are the same length and height, 
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but the second one (case B) has 3 more trusses connecting the top and bottom 
beam and is thus more structurally redundant.  If the trusses have the same dimen-
sions, the second bridge should have higher reliability than the first one (case A) 
for a longer period of time.  Regardless of how failure is defined for the first 
bridge, a similar failure should take longer to occur in the second bridge.  Analo-
gously, the third bridge design (case C) is likely to be more reliable than the first 
one (case A), since it uses reinforced components with improved individual reli-
ability (in particular, components 1’, 2’, 5’, 6’, 9’, 10’ and 13’ are more reliable 
than their corresponding components in case A).   

Let us consider three different types of failure.  Type 1 failure corresponds to 
slight damage, where the structure is no longer as robust as it was at the beginning 
but it can still be expected to perform the function it was built for.  Type 2 failure 
corresponds to severe damage, where the structure is no longer stable but it is still 
standing.  Finally, type 3 failure corresponds to complete structural failure, or col-
lapse.  Now we have four states to describe the structure, but only two (failed or 
not failed) to describe each component of the structure.  We can track the state of 
the structure by tracking the states of its components.  Also, we can compare the 
reliabilities of the three different structures over time, taking into account that dif-
ferent numbers of component failures will correspond to each type of structural 
failure depending on the structure.  For example, a failure of one component in the 
case A and C bridges could lead to a type 2 failure (severe damage), while it will 
only lead to a type 1 failure (slight damage) in the case B bridge.  In other words, 
for case B it will take at least two components to fail in the same section of the 
bridge before the structure experiences a type 2 failure. 

In order to develop a numerical example, we assumed that the failure-time dis-
tributions associated with each individual truss are known.  Table 9.1 shows these 
distributions.  As explained before, this is a reasonable assumption since this in-
formation can be obtained either from historical data or from accelerated-life tests. 

For Cases A and C, only one minimal path must be considered since the struc-
ture will be severely damaged (the kind of “failure” we are interested in) when-
ever one of its components fails.  However, for Case B a total of 110 minimal 
paths were identified.  The structure will not experience a type 2 failure if, and 
only if, all components in any of those minimal paths are still operative [8].  To 
numerically solve this case study we used the SURESIM software application 
[11], which implements the algorithms described in our methodology.  We ran the 
experiments on a standard PC, Intel Pentium 4 CPU 2.8GHz and 2GB RAM.  
Each case was run for one million iterations, each iteration representing a struc-
tural life-cycle for a total of 1E6 observations.  The total computational time em-
ployed for running all iterations was below 10 seconds for the two tests related to 
Cases A and C –the ones with just one minimal path–, and below 60 seconds for 
the test related to Case B.  Figure 9.4 shows, for a type 2 failure, the survival (reli-
ability) functions obtained in each case –notice that similar curves could be ob-
tained for other types of failures.  This survival function shows the probability that 
each bridge will not have failed –according to the definition of a type 2 failure– 
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after some time (expressed in years).  As expected, both cases B and C represent 
more reliable structures than case A.  In this example, case B (redundant compo-
nents) shows itself to be a design at least as reliable as case C (reinforced compo-
nents) for some time period (about 11 years), after which case C is the most reli-
able design.  Notice that this conclusion holds only for the current values in Table 
9.1. That is, should the shape and scale parameters change –e.g. by changing the 
quality of reinforced components–, the survival functions could be different. 

Table 9.1 Failure-time distributions at component level 

Failure-time distribution for each of the trusses 

Component Distribution Shape Scale Component Distribution Shape Scale 
1 Weibull 4 22 9 Weibull 4 22 
1’ Weibull 6 28 9’ Weibull 6 28 
2 Weibull 6 18 10 Weibull 6 18 
2’ Weibull 6 28 10’ Weibull 6 28 
3 Weibull 5 30 11 Weibull 5 30 
4 Weibull 5 30 12 Weibull 5 30 
5 Weibull 4 22 13 Weibull 4 22 
5’ Weibull 6 28 13’ Weibull 6 28 
6 Weibull 6 18 14 Weibull 6 18 
6’ Weibull 6 28 15 Weibull 6 18 
7 Weibull 5 30 16 Weibull 6 18 
8 Weibull 5 30 - - - - 

 

 
Fig. 9.4 Survival functions for different alternative designs 



Potential Applications of DES and Fuzzy Rule-Based Systems to Structural R&A 11 

Table 9.2 shows the estimated structural mean time to a type 2 failure (severe 
damage) for each bridge design.  Notice that case C is the one offering a larger 
value for this parameter. 

Table 9.2 Estimated mean time to a type 2 failure for each bridge 

Structural Mean Time To Type-2 Failure 
(estimated values from simulation) 

Case Years 

A 11.86 
B 14.52 
C 16.73 

 
Finally, Figure 9.5 shows failure criticality indices for Case A –similar graphs 

could be obtained for cases B and C from the simulation output.  Notice that the 
most critical components are trusses 2, 6 and 10. Since there is only one minimal 
path, this could have been predicted based on the distribution parameters assigned 
to each component.  Components 1, 5, 9 and 13 also show high criticality indices.  
Knowing these indices could be very useful during the design phase, since they 
reveal those components that are responsible for most structural failures and, 
therefore, give clear hints on how to improve structural reliability either through 
direct reinforcement of those components or through adding redundancies. 
 

 
Fig. 9.5 Failure Criticality Indices for case A 
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9.9 Numerical Example 2: Structural Availability 

For the purposes of illustrating our methodology, we will continue with a simpli-
fied maintainability analysis of the three bridge cases presented above.  We have 
already introduced the benefits of being able to track a structure through time in 
discrete event simulations (DES) in terms of measuring its reliability.  With DES, 
one can also consider the effect of maintenance policies –modeled as random re-
pair-times for each component– and eventually track the structural availability 
function as well as the associated costs of those repairs.  This could be a valuable 
extension of the example presented previously, because being able to consider the 
affects of maintenance policies could help in deciding between multiple designs 
for a structure.   

Theoretically, this technique can be applied to any structure or system for 
which the component lifetimes and failure probabilities are known.  It could be 
well suited for analyzing the reliability and maintenance costs of structures that 
are subjected to persistent natural degrading forces, such as wind turbines de-
ployed in the ocean, bridges subjected to high winds, or perhaps even spacecraft 
that sustain a great deal of damage as they reenter the atmosphere.  This method 
could also be especially valuable in the design phase of structures with moving 
parts that will undergo accelerated degradation, such as draw bridges, vehicles, 
rides at theme parks, or robotics used in manufacturing.  For these structures, re-
pairs should happen relatively frequently because they will need to operate at a 
higher level of reliability, especially where human lives could potentially be at 
risk. 

Table 9.3 shows repair-time distributions for each of the trusses.  As before, for 
illustration purposes it will be assumed that this data is known –e.g. that it has 
been obtained from historical observations.  Again, our DES-based algorithms 
were used to analyze this new scenario.  The goal was to obtain information about 
structural availability through time, i.e.: about the probability that each possible 
structure will be operative –not suffering a type 2 or type 3 failure– at any given 
moment in the years to come.  Figure 9.6 shows availability functions obtained for 
each alternative design.  These functions consider a time interval of one hundred 
years.  Notice that this time there are not any significant differences between cases 
A and C.  Since we are now considering repairs at component level, reinforcing 
some components (case C) will basically shift the availability curve to the right, 
but not upwards.  On the other hand, adding redundancies (case B) has shown to 
be more effective from an availability point of view.  Since we are repairing com-
ponents as they fail, and since repair times are much smaller than failure times, it 
is unlikely that two in the same section will be in a state of failure at the same 
time.  Of course, costs associated with each strategy should also be considered in 
real-life whenever a decision on the final design must be made.  Simulation can 
also be helpful in this task by providing estimates for the number of component 
repairs that will be necessary in each case. 
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Table 9.3 Repair-time distributions at component level 

Repair-time distributions for each of the trusses 

Component Distribution Shape Scale Component Distribution Shape Scale 
1 Weibull 2 0.5 9 Weibull 2 0.5 
1’ Weibull 2 0.5 9’ Weibull 2 0.5 
2 Weibull 1.8 0.5 10 Weibull 1.8 0.5 
2’ Weibull 1.8 0.5 10’ Weibull 1.8 0.5 
3 Weibull 1.8 0.3 11 Weibull 1.8 0.3 
4 Weibull 1.8 0.3 12 Weibull 1.8 0.3 
5 Weibull 2 0.5 13 Weibull 2 0.5 
5’ Weibull 2 0.5 13’ Weibull 2 0.5 
6 Weibull 1.8 0.5 14 Weibull 1.8 0.5 
6’ Weibull 1.8 0.5 15 Weibull 1.8 0.5 
7 Weibull 1.8 0.3 16 Weibull 1.8 0.5 
8 Weibull 1.8 0.3 - - - - 

 
 

 
Fig. 9.6 Availability functions for different alternative designs 
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9.10 Future Work: Adding Fuzzy Rule-based Systems 

Based on what has been discussed so far, at any given time each structural com-
ponent will have a certain level of operability. Recall that multiple states could be 
considered for components.  As described before, this time-dependent component 
state can often be determined by using statistical distributions to model compo-
nents’ reliability and/or availability functions.  Sometimes, though, this modeling 
process can be difficult to perform.  Also, there might be situations in which it is 
not possible to accurately determine the current state of a component at a given 
moment but, instead, it is possible to perform visual or sensor-based inspections, 
which could then be analyzed by either human or system experts to obtain esti-
mates about the component’s state.  Therefore, it seems reasonable to consider al-
ternative strategies to model uncertainty at component-level.  To that end, we pro-
pose the use of a fuzzy rule-based system (Figure 9.7).  Some basic ideas behind 
this approach are given below, and a more detailed discussion of the concepts be-
ing involved can be found in [1]. 
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Fig. 9.7 Alternative approaches to the structural reliability problem 

Fuzzy sets allow the modeling of vagueness and uncertainty, which are very often 
present in real-life scenarios.  A fuzzy set A  defined on a set of elements U  is 
represented by a membership function : [0,1]A Uµ → , in such a way that for any 
element u  in U  the value ( )A uµ  measures the degree of membership of u  in the 
fuzzy set A .  An example of such a membership function in the context of struc-
tural reliability can be found in [14].  In the structural reliability arena, a set of n  
observable proprieties, ( )iu t , 1, 2,...,i n= , could be considered for each structural 
component at any given moment t.  Each of these properties has an associated 
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fuzzy set iA , which usually consists of a list of desirable conditions to be satisfied 
by the component.  Then, by defining ( )( ) ( )

ii A ix t u tµ= , the vector of inputs 

( )1 2( ), ( )..., ( )nx t x t x t  is obtained.  This vector describes how the associated com-
ponent is performing with respect to the each of the n  observable properties that 
are being considered.  From this information, a corresponding output can be gen-
erated by using the so called aggregation functions [1].  This output provides an 
index value that can be interpreted as a measure of the current component state –
i.e., it can be interpreted as a measure of how far the component is from being in a 
failure state or, put in other words, how likely the component is of being in some 
operative state.  The aforementioned aggregation functions represent a set of logi-
cal rules, which have the following form: 
 

if { 1u ∈ 1A } and/or { 2u ∈ 2A } ... and/or { nu ∈ nA } then conclusion 
 
Fuzzy rule-based systems involve aggregation of various numerical scores, which 
correspond to degrees of satisfaction of antecedents associated with m  rules.  The 
initial form of the membership functions for fuzzy rules require a configuration 
process, since these rules employ some fuzzy expressions.  The fuzzy rule-based 
system performs a fuzzy inference for calculating scores of judgment items [32].  
Finally, notice that the number of fuzzy sets for each input item, the initial form of 
each membership function, and the initial score value in each rule must be set by 
discussion with building and civil engineering experts.  As the main goal of our 
approach is to provide engineers with a practical and efficient tool to design more 
reliable structures, future work will be focused into implementing and testing this 
rule-based system approach into our SURESIM software [10]. 

9.11 Conclusions 

In this chapter, the convenience of using probabilistic methods to estimate reliabil-
ity and availability in time-dependent building and civil engineering structures has 
been discussed.  Among the available methods, discrete-event simulation (DES) 
seems to be the most realistic choice, especially during the design stage, since it 
allows for comparison of different scenarios.  DES offers clear advantages over 
other approaches, namely: (a) the opportunity of creating models which accurately 
reflect the structure’s characteristics and behavior –including possible depend-
ences among components’ failure and repair times–, and (b) the possibility of ob-
taining additional information about the system’s internal functioning and about 
its critical components.  Therefore, a simulation-based approach is recommended 
for practical purposes, since it can consider details such as multi-state structures, 
dependencies among failure and repair-times, or non-perfect maintenance policies.  



16  A. Juan, A. Ferrer, C. Serrat, J. Faulin, G. Beliakov and J. Hester 

The numerical examples discussed in this chapter provide some insight on how 
DES can be used to estimate structural reliability and availability functions when 
analytical methods are not available, how it can contribute to detect critical com-
ponents in a structure that should be reinforced or improved, and how to make bet-
ter designing decisions that consider not only construction but also maintainability 
policies.  Finally, we also discuss the potential applications of fuzzy rule-based 
systems as an alternative to the use of statistical distributions.  One of the major 
advantages of the former approach is the possibility of incorporating the engi-
neer’s experience in order to improve the reliability of the structures, its design 
and its maintenance, so we consider it a valuable topic for future research in the 
structural reliability arena. 

Acknowledgments 

This work has been partially supported by the IN3-UOC Knowledge Community 
Program (HAROSA) and by the Institute of Statistics and Mathematics Applied to 
the Building Construction (EPSEB - UPC). 

References 

1. Beliakov G, Pradera A, Calvo T (2007) Aggregation Functions: A Guide for Practitioners. In: 
Studies in Fuzziness and Soft Computing, vol. 221. Springer-Verlag, Berlin. 

2. Billinton R, Wang P (1999) Teaching distribution systems reliability evaluation using Monte 
Carlo simulation. IEEE Transactions on Power Systems 14:397-403 

3. Camarinopoulos L, Chatzoulis A, Frondistou-Yannas M, Kallidromitis V (1999) Assessment 
of the time-dependent structural reliability of buried water mains. Reliability Engineering and 
Safety 65(1):41–53 

4. Coit D (2000) System Reliability Prediction Priorization Strategy. In: 2000 Proceedings An-
nual Reliability and Maintainability Symposium 175–180. Los Angeles, CA, USA  

5. Ditlevsen O, Madsen H (2007) Structural Reliability Methods. John Wiley & Sons, Chiches-
ter, UK. Available at http://www.web.mek.dtu.dk/staff/od/books.htm 

6. Fagan T, Wilson M (1968) Monte Carlo simulation of system reliability. In: Proceedings of 
the 23rd ACM national conference 289–293 

7. Faulin J, Juan A, Serrat C, Bargueño V (2007) Using Simulation to determine Reliability and 
Availability of Telecommunication Networks. European Journal of Industrial Engineering 
1(2):131–151 

8. Faulin J, Juan A, Serrat C, Bargueño V (2008) Improving Availability of Time-Dependent 
Complex Systems by using the SAEDES Simulation Algorithms. Reliability Engineering and 
System Safety 93(11):1761–1771 

9. Frangopol D, Maute K (2003) Life-cycle reliability-based optimization of civil and aerospace 
structures. Computers & Structures 81(7):397–410 

10. Juan A, Faulin J, Serrat C, Sorroche M, Ferrer A (2008) A Simulation-based Algorithm to 
Predict Time-dependent Structural Reliability. In: Rabe M (ed) Advances in Simulation for 
Production and Logistics Applications 555–564. Fraunhofer IRB Verlag, Stuttgart, Germany 



Potential Applications of DES and Fuzzy Rule-Based Systems to Structural R&A 17 

11. Juan A, Faulin J, Sorroche M, Marques J (2007) J-SAEDES: A Simulation Software to im-
prove Reliability and Availability of Computer Systems and Networks. In: Proceedings of the 
2007 Winter Simulation Conference 2285–2292. Washington D.C., USA 

12. Juan A, Vila A (2002) SREMS: System Reliability Using Monte Carlo Simulation with VBA 
and Excel. Quality Engineering 15(2):333–340 

13. Kamal H, Ayyub B (1999) Reliability Assessment of Structural Systems Using Discrete-
Event Simulation. In: 13th ASCE Engineering Mechanics Division Specialty Conference. 
Baltimore, MD, USA 

14. Kawamura K, Miyamoto A (2003) Condition state evaluation of existing reinforced concrete 
bridges using neuro-fuzzy hybrid system. Computers and Structures 81:1931–1940 

15. Laumakis P, Harlow G (2002) Structural Reliability and Monte Carlo Simulation. Interna-
tional Journal of Mathematical Education in Science and Technology 33(3):377–387 

16. Law A (2007) Simulation Modeling & Analysis. McGraw-Hill 
17. Lertwongkornkit P, Chung H, Manuel L (2001) The Use of Computer Applications for 

Teaching Structural Reliability. In: Proceedings of the 2001 ASEE Gulf-Southwest Section 
Annual Conference. Austin, Texas, USA 

18. Li C (1995) Computation of the Failure Probability of Deteriorating Structural Systems. 
Computers & Structures 56(6):1073–1079 

19. Mahadevan S, Raghothamachar P (2000) Adaptive simulation for system reliability analysis 
of large structures. Computers & Structures 77:725–734 

20. Marek P, Gustar M, Anagnos T (1996). Simulation Based Reliability Assessment for Struc-
tural Engineers. CRC Press, Boca Raton, FL, USA 

21. Marquez A, Sanchez A, Iung B (2005) Monte Carlo-Based Assessment of System Availabil-
ity. a Case Study for Co-generation Plants. Reliability Engineering & System Safety 
88(3):273–289 

22. Meeker W, Escobar L (1998) Statistical Methods for Reliability Data. John Wiley & Sons 
23. Melchers R (1999) Structural Reliability: analysis and prediction. John Wiley & Sons 
24. Nilson A, Darwin D, Dolan C (2003) Design of Concrete Structures. McGraw-Hill Science. 
25. Park S, Choi S, Sikorsky C, Stubbs N (2004) Efficient method for calculation of system reli-

ability of a complex structure. Int. J. of Solids and Structures 41:5035–5050 
26. Petryna Y, Kratzig W (2005) Computational framework for long-term reliability analysis of 

RC structures. Comput. Methods Appl. Mech. Eng. 194(12-16):1619–1639 
27. Piegat A (2005) A new definition of the fuzzy set. Int. J. Appl. Math. Compt. Sci. 15(1):125–

140 
28. Song J, Kang W (2009) System reliability and sensitivity under statistical dependence by ma-

trix-based system reliability method. Structural Safety 31(2):148–156 
29. Stewart M, Rosowsky D (1998) Time-dependent reliability of deteriorating reinforced con-

crete bridge decks. Structural Safety 20:91–109 
30. Thoft-Christensen P, Murotsu Y (1986) Application of Structural Systems Reliability The-

ory. Springer Verlag 
31. Vukazich S, Marek P (2001) Structural Design Using Simulation Based Reliability Assess-

ment. Acta Polytechnica 41(4–5):85–92 
32. Zimmerman H (1996) Fuzzy sets theory and its applications. Kluwer, Boston. 


